Hypertrophy-stimulated myogenic regulatory factor mRNA increases are attenuated in fast muscle of aged quails.
نویسندگان
چکیده
Myogenic regulatory factors (MRFs) are a family of skeletal muscle-specific transcription factors that regulate the expression of several muscle genes. This study was designed to determine whether MRF transcripts were increased in hypertrophy-stimulated muscle of adult quails and whether equivalent increases occurred in muscles of older quails. Slow-tonic anterior latissimus dorsi and fast-twitch patagialis muscles of adult, middle-aged, aged, and senescent quails were stretch overloaded for 6, 24, or 72 h, with contralateral muscles serving as controls. RNase protection assays showed that MRF4 and MyoD transcript levels were increased and myogenin and Myf5 transcripts were induced in stretch-overloaded muscles. However, MRF4 and MyoD increases were significantly attenuated in patagialis muscles of older quails. RT-PCR analyses of three MRF-regulated genes showed that increases in the transcription of these genes occurred with stretch overload, but the increases were less in muscles of older quails. In summary, attenuated MRF responses in muscles from aged animals may partially explain why muscles from older animals do not hypertrophy to the same extent as muscles from younger animals.
منابع مشابه
Potential role for Id myogenic repressors in apoptosis and attenuation of hypertrophy in muscles of aged rats.
Aging attenuates the overload-induced increase in myogenic regulatory transcription factor (MRF) expression and the extent of muscle enlargement. To identify whether mRNA levels of repressors of the MRFs are greater in overloaded muscles from aged animals, overload was achieved in plantaris muscle of aged (33 mo; n = 14) and adult (9 mo; n = 17) rats. After 14 days, plantaris muscles in the ove...
متن کاملGene expression of myogenic factors and phenotype-specific markers in electrically stimulated muscle of paraplegics.
The transcription factors myogenin and MyoD have been suggested to be involved in maintaining slow and fast muscle-fiber phenotypes, respectively, in rodents. Whether this is also the case in human muscle is unknown. To test this, 4 wk of chronic, low-frequency electrical stimulation training of the tibialis anterior muscle of paraplegic subjects were used to evoke a fast-to-slow transformation...
متن کاملIncreased myogenic repressor Id mRNA and protein levels in hindlimb muscles of aged rats.
The objective of this study was to determine if levels of repressors to myogenic regulatory factors (MRFs) differ between muscles from young adult and aged animals. Total RNA from plantaris, gastrocnemius, and soleus muscles of Fischer 344 x Brown Norway rats aged 9 mo (young adult, n = 10) and 37 mo (aged, n = 10) was reverse transcribed and then amplified by PCR. To obtain a semiquantitative ...
متن کاملAging influences cellular and molecular responses of apoptosis to skeletal muscle unloading.
The influence of aging on skeletal myocyte apoptosis is not well understood. In this study we examined apoptosis and apoptotic regulatory factor responses to muscle atrophy induced via limb unloading following loading-induced hypertrophy. Muscle hypertrophy was induced by attaching a weight to one wing of young and aged Japanese quails for 14 days. Removing the weight for 7 or 14 days after the...
متن کاملResistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle.
Increasing evidence suggests that the myogenic regulatory factors (MRFs) and IGF-I have important roles in the hypertrophy response observed after mechanical loading. We, therefore, hypothesized that a bout of heavy-resistance training would affect the MRF and IGF-I mRNA levels in human skeletal muscle. Six male subjects completed four sets of 6-12 repetitions on a leg press and knee extensor m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 275 1 Pt 1 شماره
صفحات -
تاریخ انتشار 1998